
qt M'__ NASA Contractor Report 189663

-- vICASE Report No. 92-21

ICASE
NONLINEARLY STABLE COMPACT SCHEMES
FOR SHOCK CALCULATIONS

DTIC_
ELECTE

Bernardo Cockburn AUG 03 1992
Chi-Wang Shu SA

Contract No. NASI-18605
May 1992

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

lThi. document has been oppwoved
fo pbli¢c release and sale; its

• , . -- , I b tio is unli tte d.

National Aeronautics and
Space Administration 93 -20925
Langley Research Center ... m iii u192 Hampton, Virginia f6525 11111111111111~I111111 I



NONLINEARLY STABLE COMPACT SCHEMES
FOR SHOCK CALCULATIONS D2nC QUALITY IPCTED

1 Accesion For

Bernardo Cockburn 1 
.1 F

School of Mathematics NTIS CTA&I

University of Minnesota UOaTnouAc [
Minneapolis, MN 55455 J.stification .........................

and B ........................
Di,3t,~bjtior I

Chi-Wang Shu 2 Availability Codes
Division of Applied Mathematics

Brown University Dist Special o
Providence, RI 02912 -1

ABSTRACT

In this paper we discuss the applications of high order compact finite difference methods
for shock calculations. The main idea is the definition of a local mean which serves as a
reference for introducing a local nonlinear limiting to control spurious numerical oscillations
while keeping the formal accuracy of the scheme. For scalar conservation laws, the resulting
schemes can be proven total variation stable in one space dimension and maximum norm
stable in multiple space dimensions. Numerical examples are shown to verify accuracy and
stability of such schemes for problems containing shocks. The idea in this paper can also be
applied to other implicit schemes such as the continuous Galerkin finite element methods.
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1 Introduction

Compact schemes are methods where the derivatives are approximated not by polynomial
operators but by rational function operators on the discrete solutions. In this paper we are
interested in solving a hyperbolic conservation law

Ut+ f(u), +g(u)V = 0

u(11Y,0) = u0(x,y) (1.1)

using compact schemes. In the semi-discrete form, a compact scheme for solving (1.1) can
be written as

- (A B.f(u)) j- I (A1'Bg(u))ij = L(u)ij (1.2)
dt AXA

where A and B are both local, one dimensional operators. The subscript x or y indicates

that the operator is applied in the x or y direction.
For example, a fourth order central compact scheme is given by (1.2) with

(Av)i = 1(vi-1 + 4vi + vi+1)

(Bv)i = 1 (Vi+, - vi- 1), (1.3)

a sixth order central compact scheme is given by

1
(Av), = -(vi- + 3vi i vi+,)

(Bv)i = 6(vi+2 + 28vi+i - 28vi_, - vi- 2 ), (1.4)

and two third order upwind compact schemes are given by

1
(Av)i = -(-vi-i + 5vi - vi+1)

3

(Bv)i = 1(3v1 - 4vi- 1 + vi- 2) (1.5)

and

(Av)i = 1(-Vi + 5v, -
3
1

(Bv)i = I(-vi+2 + 4vi+l - 3vi) (1.6)

depending upon the wind direction. Notice that (1.5) and (1.6) have the same implicit part
A which is symmetric. This fact will be used later in Section 2 to define our local means.



The cost of compact schemes, regardless of the number of space dimensions, involves only
inversion of the narrowly banded (usually tridiagonal) matrix A and hence is comparable
to explicit methods. This is notably different from other implicit methods such as the
continuous Galerkin finite element methods in multiple space dimensions, even if they are
similar in one space dimension.

The advantages of compact schemes include the relatively high order of accuracy using a
compact stencil (for example, the fourth order scheme (1.3) when discretized in time using
Euler forward, uses only a three point stencil in each time level), a better (linear) stability,
and usually fewer boundary points to handle. In recent years compact schemes have attracted
much attention in various fields such as the direct numerical simulations of turbulence. We
refer the readers to [2], [3], [4], [12], and [18] for more details.

The objective of this paper is to apply compact schemes for shock calculations. As
with any other linear schemes (schemes which are linear when applied to linear equations),
compact schemes usually demonstrate nonlinear instability when applied to discontinuous
data. We follow the TVD (total variation diminishing) ideas in [9], [13] and try to define
a suitable nonlinear local limiting to avoid spurious oscillations while keeping the formal
accuracy of the scheme. Notice that the compact scheme, like an implicit scheme, is global.
That is, the approximation to f(u)., at x = xi involves Uk along the whole line due to the
tridiagonal inversion A- 1 . Our main idea is to define a local mean, and use it as a reference for
introducing a local limiting. In Section 2 we introduce the limiting for one space dimension
and prove total variation stability. In Section 3 we introduce the limiting for multiple space
dimensions and prove maximum norm stability. In Section 4 we present numerical examples,
and concluding remarks are included in Section 5.

The ideas in this paper were first used by us for continuous Galerkin finite element method
in [7]. That is an on-going project. In this paper we restrict our attention to scalar problems
in order to obtain provable stability results. The application of the method to systems of
hyperbolic conservation laws and to other types of compact schemes (e.g. [1]) is currently
under investigation.

In this paper, we use the total variation diminishing (TVD) Runge-Kutta type time dis-
cretization, introduced in [14], [17], to discretize the ODE in the method-of-lines formulation
(1.2). In the second order case, the time discretization is

u() = un + AtL(u')

un+1 = un + UM + 1AtL(uM'), (1.7)

and in the third order case it is

U(1) = un + AtL(u')

u(2) = 3 +1(1) + 1 AtL(uM) (1.8)
4 4 4

un+1 = 1un +2u((2)+ 2 AtL(u(2)).

These special Runge-Kutta type time discretizations are labelled TVD because it can be
proven that under suitable restrictions on the time step At (the CFL condition), the full
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discretization (1.7) or (1.8) is TVD, or stable under another norm (for example, the L.
norm) if the first order Euler forward time discretization for (1.2)

un+ 1 = u n + AtL(un)

is TVD or stable under the other norm. For details, see [14] and [171.
We thus only need to consider the Euler forward scheme (1.9) for stability analysis in the

subsequent sections.

2 One Space Dimension

In one space dimension, equation (1.1) becomes

ut + f(u) = 0

u(X,0) = u°(x), (2.1)

the scheme (1.2) is

du 1 A-'Bf(u)) L(u)1 , (2.2)

and the Euler forward time discretization (1.9) becomes

u, =u!' + AtL(u"),. (2.3)

Scheme (2.3) can be easily written into a conservation form

At ,
u + ' = u!- -- t(h i - n,1) (2.4)

suitable for shock calculations. However, the numerical flux h'+ is not a local function of

uk due to the tridiagonal inversion A- '. If we define

i, = (Au)j, (2.5)

then scheme (2.3) can be left-multiplied by A to become

fi + _. At "
= i, - (Bf(un)),. (2.6)

When written into a conservation form,

At .,, _ i, - f+ f_ ), (2.7)

this involves a numerical flux +1 which is a local function of un. For example,
1

f,+1 = 2 (f(u+i) + f(u,)) (2.8)

for the fourth order central scheme (1.3),
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1

4+ = ' (fui+2) + 29f(ui+i) + 29f (u) + f(ui-)) (2.9)

for the sixth order central scheme (1.4), and

- 1
f+ (3f(u,) - f(ui-,)) (2.10)

and

*i+ = 2 (-f(ui+2)+ 3f(ui+,)) (2.11)

for the two third order upwind schemes (1.5) and (1.6), respectively. Notice that scheme
(2.7) resembles a cell-averaged (finite volume) scheme [11]. The ii in (2.5), like a cell average,
is a local mean of u, defined by Au in (1.3) through (1.6). Since the computation of the flux
fi+ip in (2.7) involves the values of u, a "reconstruction" from i to u

ui = (A-li)i (2.12)

is needed. This reconstruction is global.
It is now rather straightforward to define the limiting. We first write

f(u) = f+(u) + f-(u) (2.13)

with the requirement that

Of+(u) Of-(u) 0. (2.14)

-O-u 0, Ou
The purpose of this flux splitting is for easier upwinding at later stages. The simplest such
splitting is due to Lax-Friedrichs

1

fl(u) = (f(u) ± au), a = max lf'(u)1 (2.15)

where the maximum is taken over the range of u°(x). We then write the flux fi+1 in (2.7)
also 

as

f,+1 = fi,+ + fi+ (2.16)

where are obtained by putting superscripts ± in (2.8) through (2.11).

Next we define

df.:+ = - f+(jj); df7 = f-(i,+i) - f . (2.17)
+2 +2 22

Here df.__ are the differences between the numerical fluxes f,1 and the first order, upwind

fluxes f+(iii) and f- (i +1 ). These differences are subject to limiting for nonlinear stability.
We define the limiting by
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= m

d = m d +f(i),A+f+(2.18)

where A+vi = vj+j - vi is the usual forward difference operator, and the (now standard)
minmod function m is defined by

f smin<i<klaj, if sign(al) =... = sign(ak) = s (2.19)
me(ai,...,0ak) = 0, otherwise.

Notice that the limiting defined in (2.18) is upwind biased.
The limited numerical fluxes are then defined by

,+(M) = f+(,,) + d ,+(' () = f-(i,+,) - d +(7) (2.20)
22

and

+ = + ( ) (2.21)

If we define the total variation of the mean i by

TV(i) = i+ 1 - ,i (2.22)

we have the following proposition.

Proposition 2.1
Scheme (2.7) with the flux (2.21) is TVDM (total variation diminishing in the means)

TV(i "n+' ) < TV(an) (2.23)

under the CFL condition

max (f+'(u) - f'(u)) At < 1 (2.24)miiniiin<U<maxj fV Ax - 2"

Proof: We follow Harten [9] and write the flux difference as
j(,m) -f(m,)

R+) - j,- = -C,+ bA+Ui + Dj- A+Uj-j (2.25)

where

+f - (,)- df,+j + _C+ I = - A
22

a+Xf (i,- ) + df,+) - df I'
Di-I = 2 (2.26)

2 A+fi -1
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The limiting in (2.18) and tle properties of fI(u) in (2.14) clearly imply

Cj+_ O, Dii > 0 (2.27)

and

A- (C,+I + D <+_) .5 ( 2A+f-(4)+2A+f+(i)) < 1 (2.28)

The last inequality is due to the CFL condition (2.24). TVDM (2.23) is now immediate
according to Harten 19].

0

In order to obtain total variation stability for u, we need the following simple lemma.

Lemma 2.2
If there are two numbers 0 < 6 < 1 and a > 0, which are independent of N, such that

the N x N matrix A = (aj) satisfies:
1 N

max <a, and . ja,j <- 6najn, j = 1,...,N (2.29)

i = 1
i#j

(strongly diagonally dominance for the transpose of A), then the L, norm of A-' is bounded
independently of N,

11A'IIL, 1(2.30)

Proof: Let A = diag(al,... , aNvN), B = A - A and C = -BA - 1. We have

N N a1jIICIIL, = max j cj- max . < 6.
1:.I ZN :j<_N Iajj[ -i~jN =1i = 1a,

isj

Hence it follows that

IIA-' ILI 11 [(1 - C)A] - ' ILi = 1A(I -C)IL,
1< IIA-'I ILI I I(I - 01- ILI <5 1IA- I IL

I (Cl(LI
<
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For most compact methods, the matrix A satisfies the condition (2.29) for Lemma 2.2.
For example, in the schemes defined by (1.3), (1.4), (1.5) and (1.6), A satisfies the condition
(2.29) with 6 = 1, a = 6; 6 = 2, a = 5; 6= b , a = 3 and b=5, a = 3, respectively. For
such compact schemes, we can now prove the total variation stability for u.

Proposition 2.3
If a compact scheme (2.7) satisfies the conditions in Proposition 2.1 and Lemma 2.2, then

it is TVB (total variation bounded). That is,

TV(u') = 1 - u' < C (2.31)

for all n > 0 and At > 0. Here C is a constant independent of n and At.

Proof:
By (2.12), we have

TV(u) = - I I 'A
S S

1IA'ILz1 Ei K+j - jji -TV(i °).

0

This Proposition guarantees convergence of at least a subsequence of the numerical so-
lution.

We now discuss whether the limiting defined in (2.18) maintains the formal accuracy
of the compact schemes in smooth regions of the solution. For this we need the following
assumption.

Assumption 2.4

i = (Au)i = ui + O(Ax2 ) (2.32)

for all u E C2 .

0

This Assumption is satisfied by any compact scheme with a symmetric A, for example
all those listed in (1.3) through (1.6).

Under Assumption 2.4, it is easy to verify by simple Taylor expansions that

A+f+(fii) = f+(ji,).Ax + O(Ax2) k - i - 1,i,i + 1

df]+ = f (,)A + O(AX2 ). (2.33)

Hence in smooth regions away from critical points (critical points are defined here as
points for which f+(i)_ = 0 or f-(fi). = 0), the second and third arguments of the minmod
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functions in (2.18) are asymptotically of the same sign as the first argument and half in
magnitude. Hence the first argument will be picked by the minmod function (2.19) for
sufficiently small Ax, thus yielding

df,(m) = df. (2.34)

This guarantees the original high order accuracy of the scheme in such smooth, monotone
regions. At critical points, the accuracy will degenerate to first order as a generic restriction
of all TVD schemes (see, for example, [13]). To overcome this difficulty, we use a modification
of the minmod function

{ ,ak) a,, if jaiI < MAX2(235)
m(al,.. , ak), otherwise

where M is a constant independent of Ax. This modification is discussed in detail in [5] and
[15].

With this modification we can obtain schemes which are formally of uniform high order
accuracy and equal the original unlimited scheme in smooth regions including local extrema.
Moreover, we can prove the following proposition.

Proposition 2.5
The conclusions of Proposition 2.1 and 2.3 are still valid for any n and At such that

0 < nAt < T, with TVDM in (2.23) replaced by TVBM (total variation bounded in the
means)

TV(f") :_ C (2.36)

where C is independent of At, if the minmod function m in (2.18) is replaced by the modified
minmod function fh defined in (2.35).

Proof:
The proof is similar to that contained in [15] and [5] and is thus omitted.

C1

The choice of the constant M in (2.35) is related to the second derivative of the solution
near smooth extrema. For details, see [5] and [15]. The numerical result is usually not
sensitive to the variation of M in a large range.

In this paper we only consider pure initial value problems. u' in (1.1) is assumed to
be either periodic or compactly supported. For initial boundary value problems, ii in (2.5)
is defined differently at the boundary, as is the scheme (2.6). The limiting (2.18) can be
modified at the boundary so that the scheme remains TVDM (or TVBM) and TVB for
initial boundary value problems. We refer the readers to [5] and [16] for more details.

3 Multiple Space Dimensions

For notational simplicity we only consider the two dimensional case (1.1)-(1.2). Three space
dimensions do not pose additional conceptional difficulties. As before, we only need to
consider the Euler forward time discretization
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u lj = u n + AtL(U,). (3.1)

We again define

iiii =_ ( AvA~u)ij (3.2)

so that scheme (3.1) can be left-multiplied by AyA. to become

-i!. . At (A(B3.f(u ))ij  At1. AX Ay (A.:ByJ(u'))ij. (33)

Here and in what follows we will use the commutativity of Ax, Ay, B. and B. so that a
product can be written in any order. Scheme (3.3) can be written into a conservation form

At -At - 34
il+ 1 = i, i + fin - y(I,j+, n -

which involves numerical fluxes and ij+ as local functions of uk. For example,

1= (f(ui+I,j) + f(ui))

_~1A
g =,j+ - (g(u,.j+i) + g(Xuij)) (3.5)

for the fourth order central scheme (1.3), with analogous definitions for the other schemes.
Again, scheme (3.4) resembles a cell-averaged (finite volume) scheme [101. The iiij defined
by (3.2) is a local mean of u, and a "reconstruction" from ii to u

uij = (A-Y A 1 l)ij (3.6)

is needed to compute the fluxes fi+ ,, and gis+ in (3.4).
We remark that the additional costs of implementing scheme (3.4), comparing with the

original scheme (3.1), are the two local operators A. and AY. The major part of the cost still
consists of the two tridiagonal inversions.

The limiting to obtain nonlinear stability can now be defined in a dimension by dimension
fashion; we can use the one-dimensional flux splitting (2.13), for f(u), to write the flux fi+,j
as

Ai+ I+ + fi+- (3.7)

where f4+,, are again obtained by putting superscripts ± in, for example (3.5). The remain-

ing definition of the limiting parallels that in Section 2, with a dummy index j added for
the reference y value. We still start with the differences between the high order numerical
fluxes and the first order upwind fluxes

df ..+. = f+, - f+(dij); , = fi+ - f+ 1,(3.8)
'2  2132

and limit them by
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dm() (3)

f i+ ,j +

where A+vij - vi+i,j - vij is the forward difference operator in the x direction and the
minmod function m is defined by (2.19). We then obtain the limited numerical fluxes by

+,= f+(ij) + d j , '-+ j = f-(ui+jj) - df7+.,j (3.10)

and

f~rn) = f+(,) - (3.11)
+ , f = s + !,j + f,+ !,j.

The flux in the y-direction is defined analogously.
In light of [8] this scheme cannot be TVD in two space dimensions. However we can

obtain maximum norm stability through the following proposition.

Proposition 3.1
Scheme (3.4) with the flux (3.11) satisfies a maximum principle in the meansm i +1 ji-o

max <max . (3.12)

under the CFL condition

[max (f+'(u)) + max (-f'(u))] xx+ [max (g+'(u)) + max (-g -' (u))] At < (3.13)

where the maximum is taken in mini, i0 < u < maxij iO.

Proof: Similar to the development in Proposition 2.1, we can write the flux differences as

P ) -) -Ci+i ,jA u ij + Di-AY - (3

-) -) = Ic~,.,,ii DjLAI~ Uti" 1  (3.14)

with

Ci+, j >0, Di_. 1 > 0, Cij+ _0, D,,j_! > 0 (3.15)

due to the flux splitting (3.7), the limiting (3.9), and

A t (c,+.t,j + Di ,j, At <1( .6
AX 2 + ) + (Ci,j+ + Di,j 1 (3.16)

the CFL condition (3.13).
We then have
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At At (1
- + -~ A" ft -j-

1 - At (cj+4,1 + Diij - At(iI + Di,aj i7
+Cf~i+ ,j5i 1, j -+ Di_.,jUi' 1,j +r Ci,j+ i~J+ 1 + D. 0uj_

which implies the maximum principle (3.12) because fiz+l is written as a convex combination
of W1., fi±,j and iOj:, with positive coefficients which add up to one.

In order to obtain maximum norm stability for u, we need a lemma similar to Lemma 2.2.

Lemma 3.2
If there are two numbers 0 < b < 1 and a > 0, which are independent of N, such that

the N x N matrix A = (aij) satisfies:

1 N

max < a) and N aij1 <61aii, i=1,... N (3.17)

ji

(strongly diagonally dominance for A), then the L , norm of A- ' is bounded independent
of N

C (3.18)

Proof: The proof is similar to that for Lemma 2.2 and is thus omitted.

0

For the compact methods we consider, the matrix A is symmetric. Hence the requirements
(2.29) and (3.17) are the same.

We can now use Lemma 3.2 to obtain the maximum norm stability for u.

Proposition 3.3
If a compact scheme (3.4) satisfies the conditions in Proposition 3.1 and Lemma 3.2 for

both A. and A., then it is stable in the maximum norm. That is,

max u :5 C (3.19)
S,j

for all n > 0 and At > 0. Here C is a constant independent of n and At.

Proof:
By (3.2), we have
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U n n~ (A-1Ax1 f n) < IIA-'IILcjIAlL.max1-

2
max % i -- ma

0

This Proposition does not guarantee convergence, but it at least guarantees that the
numerical solution will not blow up due to instability.

Under the Assumption 2.4 for both A. and A,, we can again easily verify that the
limiting (3.9) maintains formally the original high order accuracy of the scheme in smooth,
monotone regions. The degeneracy of accuracy at critical points can once again be overcome
by adopting the modified minmod function (2.35) in the limiting (3.9).

4 Numerical Examples

To test the behavior of the schemes discussed in Sections 2 and 3, we use the one and two
dimensional Burgers equation with the smooth initial conditions

Ut+ ( 2) = 0

u(x,0) = 0.3+0.7sin(x) (4.1)

and

Ut + ( 2= 0

u(x,y,O) = 0.3 +0.7sin(x +y). (4.2)

Both are assumed to have 27r-periodic boundary conditions. The solutions will stay smooth
initially, and then develop shocks which move with time. The exact solution to (4.1) can be
obtained by following the characteristics and solving the resulting nonlinear equation using
Newton iteration. The exact solution to (4.2) is that of (4.1) with x replaced by x + y and
t replaced by 2t. These are standard test problems for scalar nonlinear conservation laws
containing shocks. For comparison with finite difference ENO schemes and finite element
discontinuous Galerkin methods, see [17], [5] and [6].

The schemes we test are based on the fourth order central scheme (1.3) coupled with a
fourth order Runge-Kutta time discretization (henceforth referred to as the central scheme),
as well as the third order upwind schemes (1.5)-(1.6) coupled with the third order TVD
Runge-Kutta time discretization (1.8) (henceforth referred to as the upwind scheme). For
the flux splitting (2.13) we use the Lax-Friedrichs splitting (2.15). The time step At' is
taken to satisfy a CFL condition
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Atn
max jiil - < 0.5 (4.3)

in one dimension and

max< ( + - < 0.5 (4.4)i",,I + AY
in two dimensions. When the modified minmod limiter (2.35) is used, the constant M is
taken as 1.

We first test the effect of limiters when the solution is smooth but not monotone. In
Figure 1 we plot the L1 error versus number of grid points, in a log-log scale, at t = 0.6 for
the one dimensional case and at t = 0.3 for the two dimensional case. In such scales, the error
should be a straight line with slope -k for a k-th order method. We can see that the original
compact schemes and the schemes with modified minmod limiter (2.35) (henceforth referred
to as the TVB limiter) give the expected third and fourth order accuracy respectively, while
the schemes with the minmod limiter (2.19) (henceforth referred to as the TVD limiter) give
only second order accuracy due to the degeneracy at the critical points. We can also see
that both the central and the upwind schemes work well for this smooth problem.

We then test the effect of limiters when the solution becomes discontinuous. In Figure 2
we show the results of the original compact schemes at t = 2 for the one dimensional case.
We can see over- and under-shoots as well as oscillations, and in this case the result of the
central scheme is much worse than that of the upwind one. In Figures 3 and 4 we show
the results with the TVD and the TVB limiters. Apparently the limiters have stabilized
the solution, as predicted by the theory. However the result with the central scheme is not
quite satisfactory. In Figures 5 and 6, we show the pointwise errors, in a logarithm scale, for
the numbers of grid points N = 10, 20, 40, 80 and 160. We can see that the central scheme,
even with the TVB limiter, shows a reduced accuracy for quite a large region around the
shock. This indicates that, for a scheme which is globally oscillatory (like the central compact
scheme), limiters can render it stable but may kill accuracy in smooth regions since there
are oscillations there to suppress. On the other hand, the upwind compact scheme work
well, with bigger errors for the TVD limiter near the smooth extremum which is close to the
shock. The errors for the two dimensional case are similar and are not displayed. In the last
plot, Figure 7, we show the surface of the two dimensional solution at t = 1 with 40 x 40
points using the third order upwind method with TVB limiting.

5 Concluding Remarks

We have discussed a general framework to apply local limiters on compact schemes via the
definition of a local mean. The resulting schemes are proven TVB (total variation bounded)
in one dimension and maximum norm stable for multiple space dimensions. Numerical
examples show that the base compact scheme should be upwind-biased in order to obtain
high order accuracy after limiting for shocked problems.
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Figure 1: L, error versus number of grid points in log-log scale for smooth solutions. Stars:

compact schemes without limiter; squares: with TVD limiter; diamonds: with TVB limiter.
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1(c): Third order upwind scheme, 2D
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Figure 2: Compact schemes without limiter for shocks. Pluses: computed solution; solid
line: exact solution.

2(a): Third order upwind scheme

U 7, 3~OR =2o N=40

- 7' -

- :7 N 4

,14



Figure 3: Third order upwind scheme with limiters for shocks. Pluses: computed solution;

solid line: exact solution.
3(a): With TVD limiter

u 10, 3RD ORDERT, N-40, TVO3

G.5 -

-0.5

0245

X

3(b):WithTVB lmite



Figure 4: Fourth order central scheme with limiters for shocks. Pluses: computed solution;
solid line: exact solution.
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Figure 5: Pointwise error for N = 10,20,40,80 and 160 grid points, in a logarithm scale.

Third order upwind scheme with limiters for shocks.
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Figure 6: Pointwise error for N = 10,20,40,80 and 160 grid points, in a logarithm scale.
Fourth order central scheme with limiters for shocks.
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Figure 7: Surface of third order upwind compact scheme with TVB limiter for shocks, with
40 x 40 points.
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